
fr

Richtlinie

Zur Projektierung und Dimensionierung von Anlagen mit Sauginstallationen für Heizöl EL

Directive

De conception et de dimensionnement des installations avec dispositifs d'aspiration pour fuel léger EL

Guideline

For configuration and dimensioning of systems with suction installations for fuel oil EL

Руководство

Для проектирования и расчета размеров систем снабжения жидким топливом

ru

en

ľU

Область применения и назначение

1 Область применения и назначение

1.1 Данное руководство служит основой при конфигурации и определении размеров однотрубных всасывающих топливных линий для горелок с возможностью работы на дизельном топливе.

Данные и рекомендации, представленные в документе, определены на основе законов физики и практического опыта.

Системы, спроектированные в соответствии с данными указаниями, гарантируют выполнение основных условий, обеспечивающих безупречный забор топлива.

- 1.2 А само-вентилируемая система, т.е. газ или пузыри воздуха также попадают в линию, что приводит к неполадкам.
- 1.3 В Предотвращение испарения диз.топлива в результате слишком высокого разрежения.
- 1.4 При выполнении установок с линией всасывания в каждом случае необходимо соблюдать и следовать применяемым регламентам:
 - ТРТЕ (Тех.регламент топливных ёмкостей)
 - Регулирование по технологии TPTE

Установка Аксессуары Компоненты

2 Установка – Аксессуары – Компоненты

2.1 Фильтр грубой очистки (3),

рекомендуется как дополнительный фильтр для защиты топливной линии (арматуры) горелки и клапанов.

2.2 Топливопровод заборный внутри ёмкости (2),

Должен быть изготовлен из прочного (не именяемого по размерам), маслостойкого материала. Также должна быть доступна возможность выдерживания определённой дистанции между дном топливной ёмкости и точкой забора топлива (донным клапаном 1) (размер H2), с целью предотвращения опасности всасывания осадка. Маслостойкая пластиковая трубка-стержень наилучшим образом соответствует этим условиям (не рекомендуется использовать гибкие шланги).

2.3 Донный обратный клапан (1),

Всегда рекомендуется устанавливать, когда расстояние от точки забора (всасывания) топлива до оси топливного насоса более 1 м (Н). Во избежании блокировки топливного столба, что может привести к избыточному давлению под действием тепла, обратный клапан должен быть выполнен со сбросом давления. Если система защищена от полного вакуума, обратный клапан должен быть расположен на горелке.

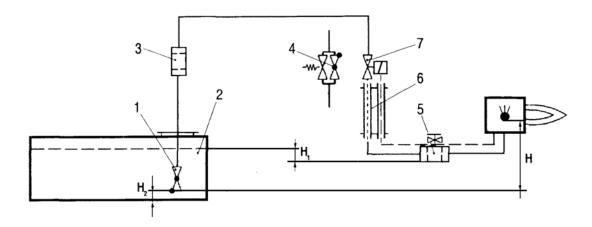
2.4 Предохранительный клапан воды,

Предписывается к установке везде, где максимально возможный уровень топлива в ёмкости выше, чем наиболее глубокая точка всасывающей линии (H₁>0). В качестве таких клапанов рекомендуется использовать электромагнитные клапаны сброса давления (7) с минимально возможными потерями давления. Топливная линия и кабельные соединения могут быть проложены в параллельных защитных трубах (6). Так называемые вакуумные клапаны следует использовать лишь в том случае, если они имеют возможность сброса давления и давление открытия не превышает 0.05 бар.

2.5 Фильтр тонкой очистки с запорным клапаном (5),

фильтр должен устанавливаться перед каждой горелкой, рекомендумый размер сетки и материал

< 50 кВт 50 — 75 микрон

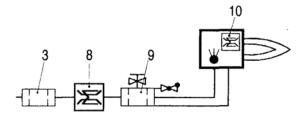

> 50 кВт 50 – 100 микрон

Спечённые бронза или пластик

2.6 Расходомер (10),

По мнению производителей, расходомеры могут использоваться как на напорной стороне, так и на стороне всасывания. Тем не менее, точность измерений будет выше при установке на напорной линии. В любом случае следует соблюдать инструкции по установке.

Если по техническим причинам расходомер (8) необходимо расположить на линии всасывания топлива, т.е. для горелок с форсунками с обратной линией, фильтр тонкой очистки должен быть расположен перед расходомером. Помните, что расходомер создаёт дополнительное сопротивление на линии всасывания топлива, и при определённых обстоятельствах точность замеров ниже, чем при замере на обратной (напорной) линии. Загрязнённые расходомеры часто становятся источником аварий, которые довольно сложно выявить.

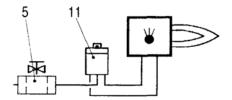


Аксессуары

Система с несколькими топливными ёмкостями и горелками

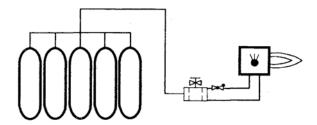
2.7 Фильтр с обратной линией (9) (с деаэратором),

предлагается как опция на фильтр, для безупречной деаэрации на линии всасывания (забора) топлива. Для систем мощностью <150 кВт всегда должны исопльзоваться фильтры с воздухоотводчиком. В данном случае фильтр также служит как охладитель топлива, нагреваемого в насосе.



2.8 Автоматический воздухоотводчик (11),

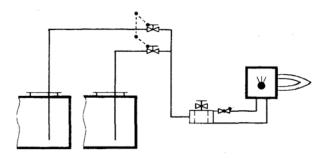
всегда используется в системах всасывания топлива в качестве экстренной помощи в случае, если по какой-либо причине невозможно исключить постоянное скапливание пузырьков воздуха и газов.


При правильной установке пузырьки газа накапливаться не будут, поэтому отпадёт необходимость в постоянном вентиляционном отверстии.

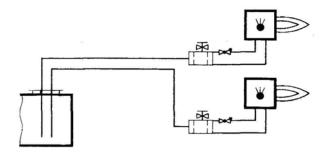
Проблемы, возникающие из-за слишком больших размеров линий не могут быть решены с помощью автоматического воздухоотводчика.

3 Система с несколькими топливными ёмкостями и горелками

3.1 Топливные ёмкости могут быть объединены без изменения имеющихся ёмкостей. В случае если расположение топливных ёмкостей и забор топлива из них симметричны, то донные клапаны не применяются и сборный коллектор расчитывается согласно **TPTE**. Возможны отклонения в правилах в зависимости от местных норм. См. п.3.4.

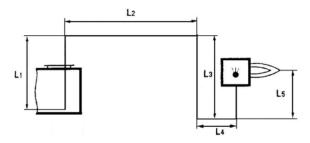


3.2 Для систем с двумя и более баками необходимо убедиться, что исключена вероятность переполнения ёмкостей в результате каких-либо ошибочных манипуляций. Это означает, что замена ёмкостей и возможное обслуживание насосов должно быть соответственным образом защищено.


Аксессуары

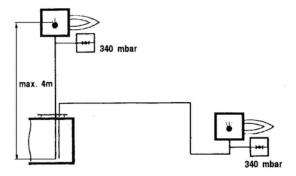
Система с несколькими топливными ёмкостями и горелками

3.3 Для систем с несколькими горелками у каждой из них должна быть своя собственная линии забора топлива.



3.4 В любом случае должны соблюдаться Технический Регламент Топливных Ёмкостей (TTV) и местные законы защиты от воды.

4 Длина линии всасывания


- 4.1 Максимально возможная длина всасывающей линии определяется потерями давления в трубопроводе, клапанах, а также высотой забора топлива. На практике не рекомендуется прокладывать топливную линию длинее 40 м.
- 4.2 В любом случае для определения максимальной высоты забора должна быть просчитана длина всасывающей линии ($L_1 + L_2 + L_3 + L_4 + L_5$).

5 Высота подъёма (всасывания)

- 5.1 Максимальная высота подъёма зависит от силы всасывания топливного насоса и физических законов (констант). Все топливные насосы горелок, используемые на сегодняшний день, способны забирать топливо на высоту до 8 метров. Поскольку газообразование может возникать уже на высоте 5 метров, то максимально предельное значение высоты забора не должно превышать 4 метра между насосом горелки и точкой забора в топливной ёмкости.
- 5.2 В случае так называемого перепада высот топливопровода, т.е. когда топливопровод сначала направлен вверх, а затем вниз, разница в высоте от точки забора топлива в ёмкости до наивысшей точки топливопровода не должна превышать 5 метров. В обычных конфигурациях высота расположения топливопровода также не должна превышать 5 метров от точки забора топлива до наивысшей точки топливопровода.
- 5.3 С целью обеспечения безаварийной работы горелки разрежение, замеряемое на топливном насосе не должно превышать 340 мбар (0,34 бар).

6 Размеры топливопроводов

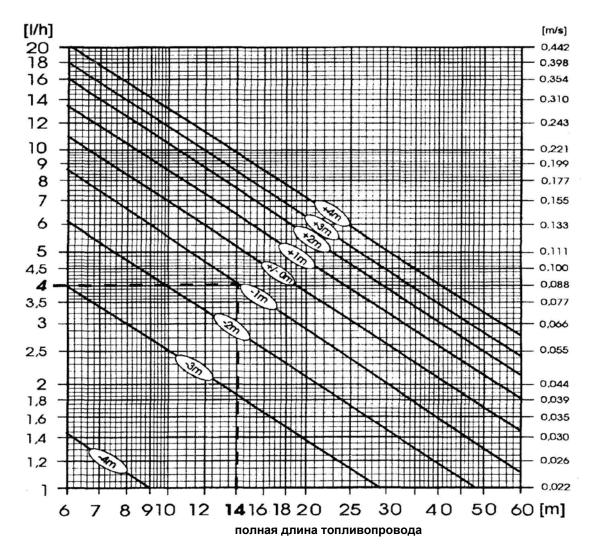
6.1 Размеры топливопроводов зависят от расхода (мощности горелки). Для обеспечения обезвоздушиания, рекомендуется выбирать размеры согласно следующей установке, а также согласно диаграммам топливопроводов.

Расход топлива * см. п.6.3			Размер всасывающей линии	
1	=	10 л/ч	Медн. труба	4 x 6
8	-	45 л/ч	Медн. труба	6 x 8
25	-	130 л/ч	Медн. труба	8 x 10
90	-	170 л/ч	Медн. труба	10 x 12

- 6.2 Максимально возможная длина топливопровода должна определяться согласно диаграммам на основании расхода топлива и уровня забора топлива.
- 6.3 Для **2-ступенчатых горелок** при определении **диаметра топливопровода величина базовой нагрузки** является решающей. Контроль соотношения **Длины топливопровода и высоты забора** должен расчитываться исходя из полной нагрузки.
- 6.4 Если **размера топливопровода** не достаточно для **нормального забора** топлива необходимо использовать вспомогательные насосы.

7 Размерная диаграмма топливопроводов

7.1 Диаграмма 1


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

Температура топлива: 0-10 [°C]

Область применения: 1-10 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 4/6 [мм] + Высота подъёма - Высота подъёма

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

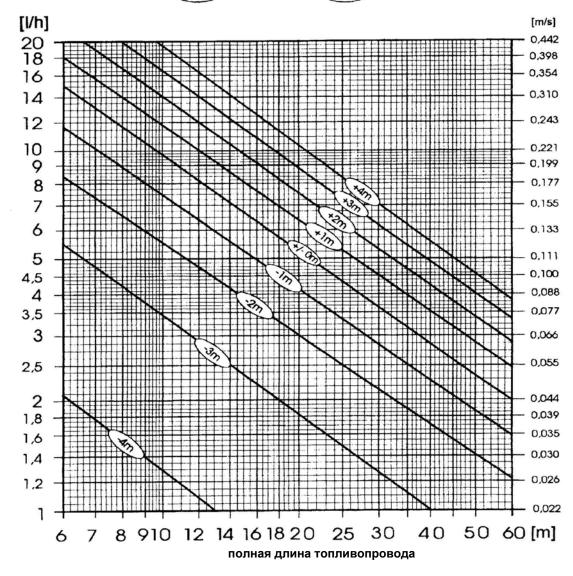
Примечание: На отметках выше 700 метров над уровнем моря необходимо учитывать таблицу с поправочными коэффициентами в зависимости от высоты.

Пример расчёта Дано: Расход 4 [Л/Ч] Высота подъёма 1 [М]

Требуется: Максимально возможная полная длина топливопровода

Решение: по диаграмме 14 [М]

7.2 Диаграмма 2


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

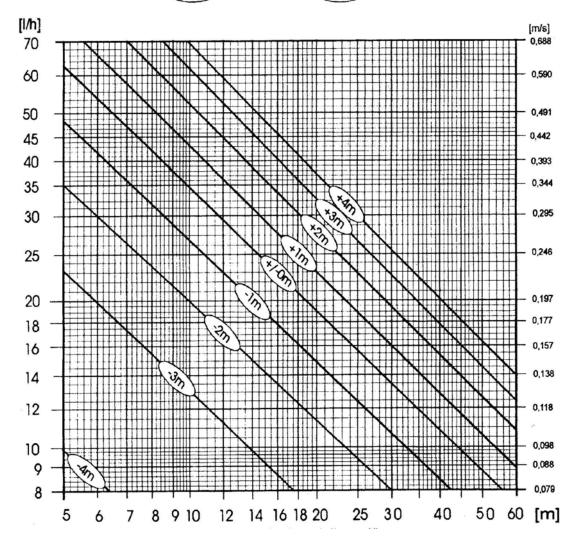
Температура топлива: > 10 [°C]

Область применения: 1-10 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 4/6 [мм] 😛 Высота подъёма 🕒 Высота подъёма

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

7.3 Диаграмма 3


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

Температура топлива: 0-10 [°C]

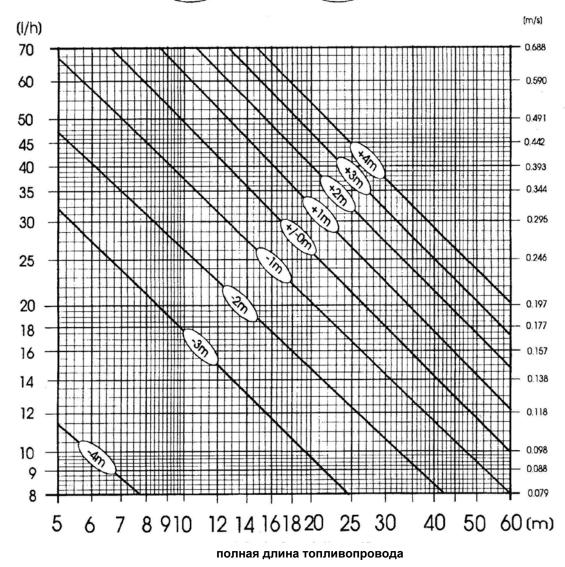
Область применения: 8-45 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 6/8 [мм] 😛 Высота подъёма 🕒 Высота подъёма

полная длина топливопровода

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

7.4 Диаграмма 4


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

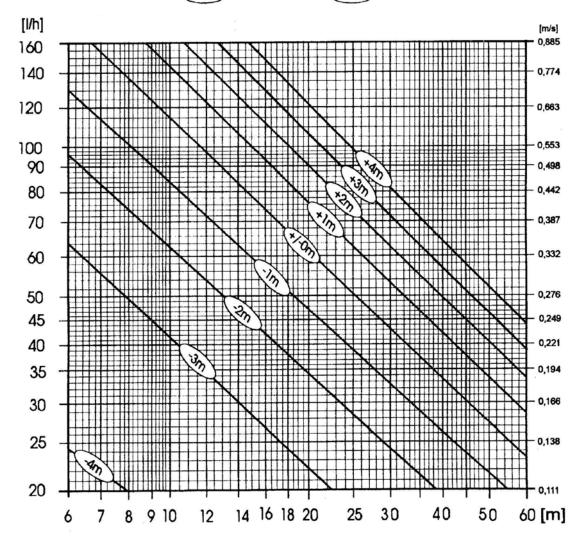
Температура топлива: > 10 [°C]

Область применения: 8-45 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 6/8 [мм] 😛 Высота подъёма 🕒 Высота подъёма

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

7.5 Диаграмма 5


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

Температура топлива: 0-10 [°C]

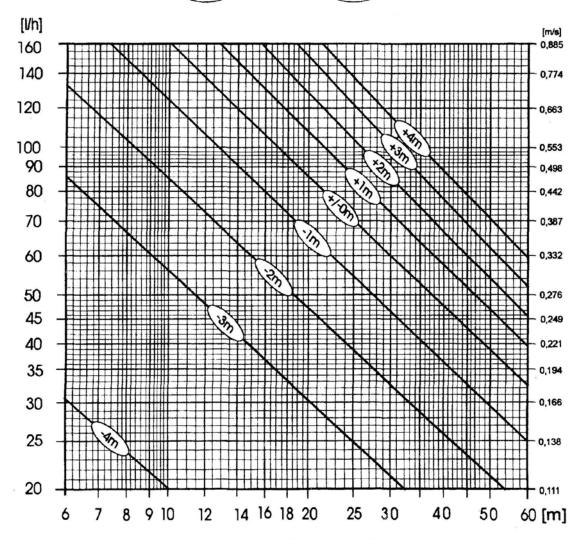
Область применения: 25-130 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 8/10 [мм] 😛 Высота подъёма 🕝 Высота подъёма

полная длина топливопровода

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

7.6 Диаграмма 6


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

Температура топлива: > 10 [°C]

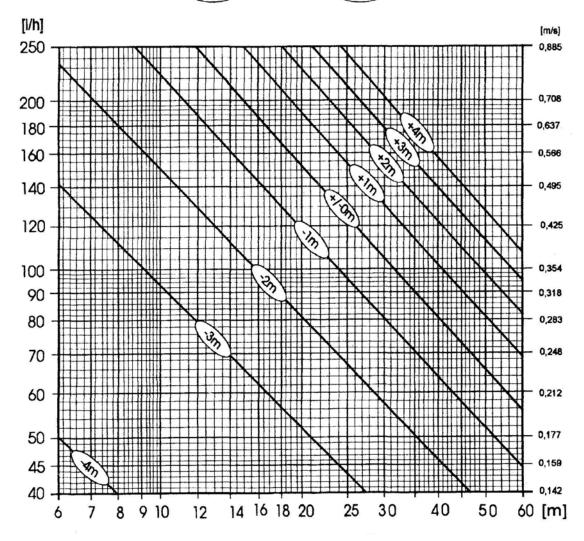
Область применения: 25-130 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 8/10 [мм] 😛 Высота подъёма 🕝 Высота подъёма

полная длина топливопровода

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

7.7 Диаграмма 7


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

Температура топлива: 0-10 [°C]

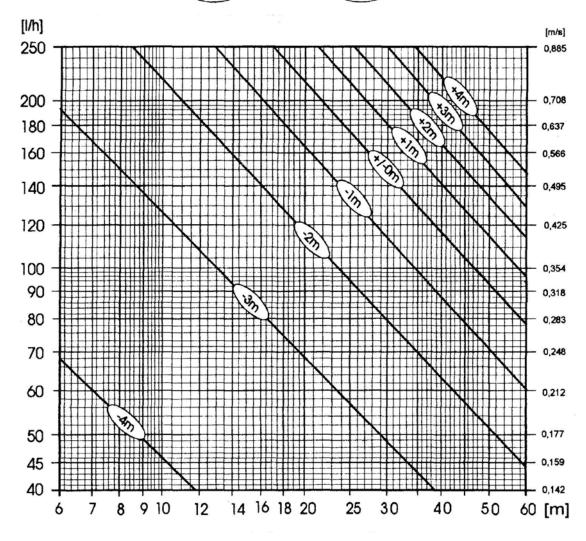
Область применения: 90-170 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 10/12 [мм] 😛 Высота подъёма 🕒 Высота подъёма

полная длина топливопровода

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

7.8 Диаграмма 8


Размерная диаграмма топливопроводов всасывающей линии

Жидкое, сверхлёгкое топливо, действительно до 700 метров над уровнем моря

Температура топлива: > 10 [°C]

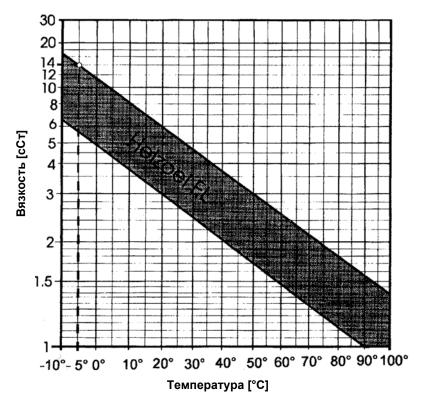
Область применения: 90-170 [л/ч], длина топливной линии: макс. 40 [м]

Медные трубопроводы 10/12 [мм] 😛 Высота подъёма 🕒 Высота подъёма

полная длина топливопровода

В диаграмму включено: 1 фильтр, 1 обратный клапан, 6 х 90° отвод (40 [мбар]).

Расчет трубопроводов Для определенной температуры


8 Расчёт трубопровода для топлива определённой температуры

8.1 Разрежение, отражаемое или достигнутое в системе всасывания топлива всегда зависит от конкретного значения вязкости топлива.

При повышении вязкости топлива из-за снижения его температуры, разрежение на всасывании увеличивается.

Так как потери давления топливопровода пропорциональны вязкости топлива, то можно легко расчитать новое значение максимальной длины топливопровода при изменениях вязкости.

8.2 Диаграмма вязкости диз.топлива согласно SN 181160/2

Пример подбора:

Дано: Температура топлива -5 [°C] Требуется: Вязкость [сСт] Решение согласно диаграмме 14 [сСт]

8.3 Пример

Условия: Размерная диаграмма топливопроводов 7.1

Медный трубопровод: 4 х 6

Вязкость: 11 сСт / 0°C Расход топлива: 4 л/ч Высота подъёма: 1 m

получаем максимальную длину топливопровода 14 м

длину топливопровода 14 м $L_2 = \frac{\mathsf{B} \mathsf{93} \mathsf{K} \mathsf{1} \mathsf{x} \mathsf{L}_1}{\mathsf{B} \mathsf{93} \mathsf{K} \mathsf{2}}$

Требуется: макс. длина всасывающего топливопровода при -5°C

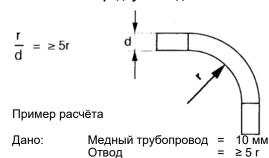
Вязк. 1 = 11 сСт.

Вязк. 2 = согласно диаграмме вязкости

14 сСт. L1 = 14 м L2 = ? $L_2 = \frac{11x14}{14} = 11,0M$

Вязк.1

Вязк.2


L2

Дополнительные сопротивления во всасывающих топливопроводах

9 Дополнительные сопротивления во всасывающих топливопроводах

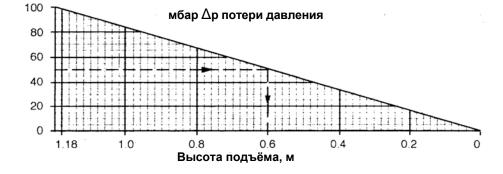
- 9.1 В размерных диаграммах всасывающего топливопровода необходимо учитывать сопротивление указанных ниже базовых комплектующих:
 - 1 фильтр - 1 обратный клапан - 6 x 90° отвод

Минимальный радиус отвода

? Требуется: Радиус r

согласно формуле: $\frac{r}{10}$ $\geq 5r = 5x10 = 50$ мм

 $r/d = \ge 5 r$


- 9.2 Если требуются дополнительные фитинги, то создаваемое ими доп.сопротивление необходимо включить в расчёты.
- 9.3 Для систем обслуживания установки отводы, места стыков, переходы (сужения/расширения) в топливопроводах в целом незначительны с точки зрения учёта сопротивлений. Тем не менее, дополнительные фильтры, клапаны, расходомеры и т.д должны быть учтены в расчётах.

Additional 90° bends are calculated as follows:

Медь Ø 4.0 / 6 MM = 0.10 MМедь Ø 6.0 / 8 MM = 0.20 M8,0 / 10 MM = 0.25 MМедь Ø 10,0 / 12 MM = 0,30 MМедь Ø 12,0 / 14 MM = 0,35 MМедь Ø

Указанные значения превышений должны быть добавлены к увеличенной длине топливопровода.

9.4 Зависимость потерь давления от высоты подъёма

9.5 Пример

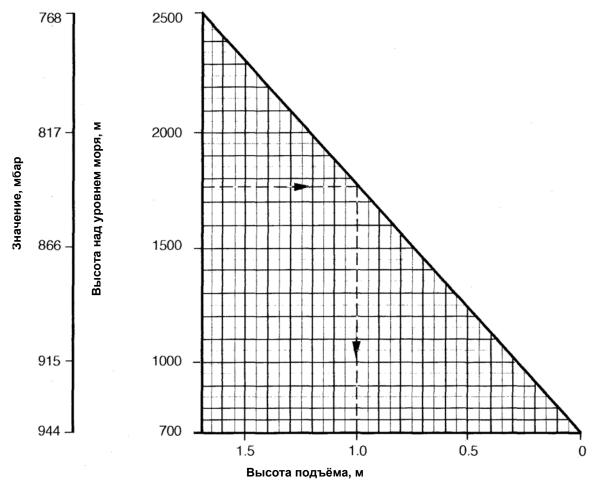
Дано: Дополнительное сопротивление в топливопроводе всасывания (например, грязный фильтр) 50 мбар

50 мбар соответствует высота подъёма до 0,6 м. Для определения максимальной длины Решение:

топливопровода всасывания указанное значение необходимо добавить к эффективной высоте подъёма.

10 Влияние устройств, защищающих от полного вакуума

Если топливные ёмкости находятся под защитой от полного вакуума допустимая высота подъёма снижается за счёт вакуума в ёмкости.


Обычно это 0,5 м.

Влияние высоты над уровнем моря свыше 700 м

11 Влияние высоты над уровнем моря свыше 700 м.

11.1 В результате снижения атмосферного давления на высоте область применения насоса на стороне всасывания соответственно снижается.

11.2 Таблица корректировки высоты подъёма

Дано:

Горелка или топливный насос установлены на высоте 1750 м над уровнем моря. Топливная ёмкость расположена на 2 м ниже горелки или топливного насоса.

Решение:

1750 м. над уровнем моря даёт коррекцию высоты подъёма на 1 м. Для определения максимальной длины топливопровода по таблице указанное значение необходимо добавить к эффективной высоте подъёма, т.е. максимальная длина топливопровожа должна быть - 3 м.